Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells

J Biol Chem. 2011 Feb 25;286(8):6780-90. doi: 10.1074/jbc.M110.179002. Epub 2010 Dec 2.


Madin Darby canine kidney (MDCK) cells are a well characterized epithelial cell line used to study mechanisms of polarized delivery. As glycans on apically expressed proteins have been identified as targeting signals, and crosslinking by the abundant galectin-3 has been implicated in the mechanism of glycan-dependent sorting, we wanted to identify other members of the galectin (Gal) family expressed in MDCK cells. By analyzing intron-exon boundaries, we identified canine genes that were highly homologous to mammalian Gal-1, 2, 3, 4, 7, 8, 9, and 12, and galectin-related HSPC159 and GRIFIN. Transcripts for Gal-2 and -12 were not detected in MDCK cells, but we found transcript levels for Gal-3 > Gal-9 > Gal-8 > Gal-1 ⋙ Gal-4 > Gal-7. Canine Gal-1, -2, -3, -4, -7, -8, -9, and -12 were cloned and expressed in Escherichia coli as GST fusion proteins to characterize binding specificities on arrays of synthetic glycans on glass slides from Core H of the NIH Consortium for Functional Glycomics. Individual expression of the N-terminal (GST-Gal-9N) and C-terminal (GST-Gal-9C) carbohydrate recognition domains greatly improved protein yield and the ability to characterize Gal-9 binding on the array. Canine galectins differentially bound sulfated disaccharides as well as human blood groups A, B, and H on both N-glycans and linear glycan structures on the array. Analysis of GST-Gal-1, -3, -4, -7, -8, -9N, and -9C binding to immunopurified human MUC1 expressed in MDCK cells revealed a preference for binding GST-Gal-3 and -9, which interestingly reflects the two most abundant galectins expressed in MDCK cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Dogs
  • Galectins / biosynthesis*
  • Galectins / chemistry
  • Galectins / genetics*
  • Gene Expression Regulation / physiology*
  • Humans
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism


  • Galectins
  • Recombinant Proteins