Bacterial killing by dry metallic copper surfaces
- PMID: 21148701
- PMCID: PMC3028699
- DOI: 10.1128/AEM.01599-10
Bacterial killing by dry metallic copper surfaces
Abstract
Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene.
Figures
Similar articles
-
Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.Appl Environ Microbiol. 2011 Jan;77(2):416-26. doi: 10.1128/AEM.01704-10. Epub 2010 Nov 19. Appl Environ Microbiol. 2011. PMID: 21097600 Free PMC article.
-
Isolation and characterization of bacteria resistant to metallic copper surfaces.Appl Environ Microbiol. 2010 Mar;76(5):1341-8. doi: 10.1128/AEM.01952-09. Epub 2010 Jan 4. Appl Environ Microbiol. 2010. PMID: 20048058 Free PMC article.
-
Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli.Appl Environ Microbiol. 2012 Mar;78(6):1776-84. doi: 10.1128/AEM.07068-11. Epub 2012 Jan 13. Appl Environ Microbiol. 2012. PMID: 22247141 Free PMC article.
-
Metallic copper as an antimicrobial surface.Appl Environ Microbiol. 2011 Mar;77(5):1541-7. doi: 10.1128/AEM.02766-10. Epub 2010 Dec 30. Appl Environ Microbiol. 2011. PMID: 21193661 Free PMC article. Review.
-
Physicochemical properties of copper important for its antibacterial activity and development of a unified model.Biointerphases. 2015 Mar 16;11(1):018902. doi: 10.1116/1.4935853. Biointerphases. 2015. PMID: 26577181 Review.
Cited by
-
Operando investigation of the synergistic effect of electric field treatment and copper for bacteria inactivation.Nat Commun. 2024 Feb 14;15(1):1345. doi: 10.1038/s41467-024-45587-3. Nat Commun. 2024. PMID: 38355666 Free PMC article.
-
Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants.Int J Extrem Manuf. 2024 Feb 1;6(1):015503. doi: 10.1088/2631-7990/ad07e7. Epub 2023 Nov 17. Int J Extrem Manuf. 2024. PMID: 38021398 Free PMC article.
-
In vitro comparison of methods for sampling copper-based antimicrobial surfaces.Microbiol Spectr. 2023 Dec 12;11(6):e0244123. doi: 10.1128/spectrum.02441-23. Epub 2023 Oct 17. Microbiol Spectr. 2023. PMID: 37847020 Free PMC article.
-
Antimicrobial Fe2O3-CuO-P2O5 glasses.Sci Rep. 2023 Oct 14;13(1):17472. doi: 10.1038/s41598-023-44743-x. Sci Rep. 2023. PMID: 37838823 Free PMC article.
-
Boosting Copper Biocidal Activity by Silver Decoration and Few-Layer Graphene in Coatings on Textile Fibers.Glob Chall. 2023 Sep 13;7(10):2300113. doi: 10.1002/gch2.202300113. eCollection 2023 Oct. Glob Chall. 2023. PMID: 37829680 Free PMC article.
References
-
- Airey, P., and J. Verran. 2007. Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J. Hosp. Infect. 67:271-277. - PubMed
-
- Borkow, G., and J. Gabbay. 2005. Copper as a biocidal tool. Curr. Med. Chem. 12:2163-2175. - PubMed
-
- Brooks, B. W., et al. 1980. Red-pigmented micrococci: a basis for taxonomy. Int. J. Syst. Bacteriol. 30:627-646.
-
- Casey, A. L., et al. 2010. Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 74:72-77. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
