Chemical visualization of an attractant peptide, LURE

Plant Cell Physiol. 2011 Jan;52(1):49-58. doi: 10.1093/pcp/pcq191. Epub 2010 Dec 11.


The pollen tube attractant peptide LUREs of Torenia fournieri are diffusible peptides that attract pollen tubes in vitro. Here, we report a method enabling the direct visualization of a LURE peptide without inhibiting its attraction activity by conjugating it with the Alexa Fluor 488 fluorescent dye. After purifying and refolding the recombinant LURE2 with a polyhistidine tag, its amino groups were targeted for conjugation with the Alexa Fluor dye. Labeling of LURE2 was confirmed by its fluorescence and mass spectrometry. In our in vitro assay using gelatin beads, Alexa Fluor 488-labeled LURE2 appeared to have the same activity as unlabeled LURE2. Using the labeled LURE2, the relationship between the spatiotemporal change of distribution and activity of LURE2 was examined. LURE2 attracted pollen tubes when embedded in gelatin beads, but hardly at all when in agarose beads. Direct visualization suggested that the significant difference between these conditions was the retention of LURE2 in the gelatin bead, which might delay diffusion of LURE2 from the bead. Direct visualization of LURE peptide may open the way to studying the spatiotemporal dynamics of LURE in pollen tube attraction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Mass Spectrometry
  • Peptide Fragments / chemistry*
  • Plant Proteins / chemistry*
  • Spectrometry, Fluorescence


  • Peptide Fragments
  • Plant Proteins