Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 1;55(1):277-86.
doi: 10.1016/j.neuroimage.2010.12.013. Epub 2010 Dec 13.

Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder

Affiliations

Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder

Massieh Moayedi et al. Neuroimage. .

Abstract

Cortical plasticity is thought to occur following continuous barrage of nociceptive afferent signals to the brain. Hence, chronic pain is presumed to induce anatomical and physiological changes in the brain over time. Inherent factors, some pre-dating the onset of chronic pain, may also contribute to brain abnormalities present in patients. In this study we used structural MRI to examine whether patients with chronic temporomandibular (TMD) pain have abnormalities in gray matter (GM) within brain areas implicated in pain, modulation and sensorimotor function. We found that patients with TMD have cortical thickening in the primary somatosensory cortex (S1), frontal polar and the ventrolateral prefrontal cortex (PFC). These findings provide a structural basis for previous findings of TMD pain and cognitive sluggishness in TMD. We then examined the contribution of TMD characteristics to GM abnormalities. We found that 1) GM in the sensory thalamus positively correlated to TMD duration, 2) cortical thickness in the primary motor (M1) and the anterior mid-cingulate cortices (aMCC) were negatively correlated to pain intensity, and 3) pain unpleasantness was negatively correlated to cortical thickness in the orbitofrontal cortex (OFC). These findings suggest that an individual's TMD pain history contributes to GM in the brain. Lastly, we examined the contribution of a potential pre-existing vulnerability due to neuroticism. In the TMD patients, we found that there was an abnormal positive correlation between neuroticism and OFC thickness, in contrast to the negative correlation found in the healthy controls. Therefore, neuroticism may contribute to TMD pathophysiology. In sum, our data suggest that GM in the brain of patients with chronic TMD pain can be shaped by both personality and pain characteristics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources