The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP
- PMID: 21163945
- PMCID: PMC3069394
- DOI: 10.1074/jbc.M110.196204
The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP
Abstract
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.
Figures
Similar articles
-
GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide.Circ Res. 2010 Feb 5;106(2):328-36. doi: 10.1161/CIRCRESAHA.109.210658. Epub 2009 Nov 19. Circ Res. 2010. PMID: 19926872 Free PMC article.
-
GTP cyclohydrolase I feedback regulatory protein is expressed in serotonin neurons and regulates tetrahydrobiopterin biosynthesis.J Neurochem. 1999 Feb;72(2):669-75. doi: 10.1046/j.1471-4159.1999.0720669.x. J Neurochem. 1999. PMID: 9930739
-
GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression.J Biol Chem. 2009 May 15;284(20):13660-13668. doi: 10.1074/jbc.M807959200. Epub 2009 Mar 13. J Biol Chem. 2009. PMID: 19286659 Free PMC article.
-
GTP cyclohydrolase I inhibition by the prototypic inhibitor 2, 4-diamino-6-hydroxypyrimidine. Mechanisms and unanticipated role of GTP cyclohydrolase I feedback regulatory protein.J Biol Chem. 1998 Aug 14;273(33):21091-8. doi: 10.1074/jbc.273.33.21091. J Biol Chem. 1998. PMID: 9694862
-
The mechanism of potent GTP cyclohydrolase I inhibition by 2,4-diamino-6-hydroxypyrimidine: requirement of the GTP cyclohydrolase I feedback regulatory protein.J Biol Chem. 2004 Sep 24;279(39):40677-82. doi: 10.1074/jbc.M405370200. Epub 2004 Jul 29. J Biol Chem. 2004. PMID: 15292175
Cited by
-
Probing the Structural Dynamics of the Plasmodium falciparum Tunneling-Fold Enzyme 6-Pyruvoyl Tetrahydropterin Synthase to Reveal Allosteric Drug Targeting Sites.Front Mol Biosci. 2020 Sep 25;7:575196. doi: 10.3389/fmolb.2020.575196. eCollection 2020. Front Mol Biosci. 2020. PMID: 33102524 Free PMC article.
-
Validating the GTP-cyclohydrolase 1-feedback regulatory complex as a therapeutic target using biophysical and in vivo approaches.Br J Pharmacol. 2015 Aug;172(16):4146-57. doi: 10.1111/bph.13202. Epub 2015 Jul 14. Br J Pharmacol. 2015. PMID: 26014146 Free PMC article.
-
Biochemical and functional characterization of Plasmodium falciparum GTP cyclohydrolase I.Malar J. 2014 Apr 19;13:150. doi: 10.1186/1475-2875-13-150. Malar J. 2014. PMID: 24745605 Free PMC article.
-
Direct evidence for the adaptive role of copy number variation on antifolate susceptibility in Plasmodium falciparum.Mol Microbiol. 2013 May;88(4):702-12. doi: 10.1111/mmi.12162. Epub 2013 Apr 24. Mol Microbiol. 2013. PMID: 23347134 Free PMC article.
-
The protein partners of GTP cyclohydrolase I in rat organs.PLoS One. 2012;7(3):e33991. doi: 10.1371/journal.pone.0033991. Epub 2012 Mar 27. PLoS One. 2012. PMID: 22479495 Free PMC article.
References
-
- Burg A. W., Brown G. M. (1968) J. Biol. Chem. 243, 2349–2358 - PubMed
-
- Shiota T., Palumbo M. P., Tsai L. (1967) J. Biol. Chem. 242, 1961–1969 - PubMed
-
- Higgins C. E., Gross S. S. (2010) in Nitric Oxide: Biology and Pathobiology (Ignarro L. J. ed) pp. 169–209, MacMillan Publishing, London, United Kingdom
-
- Ichinose H., Ohye T., Takahashi E., Seki N., Hori T., Segawa M., Nomura Y., Endo K., Tanaka H., Tsuji S. (1994) Nat. Genet. 8, 236–242 - PubMed
-
- Niederwieser A., Blau N., Wang M., Joller P., Atarés M., Cardesa-Garcia J. (1984) Eur. J. Pediatr. 141, 208–214 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
