Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Feb;116(4):646-58.
doi: 10.1111/j.1471-4159.2010.07151.x. Epub 2011 Jan 19.

Neuronal activity regulates expression of tyrosine hydroxylase in adult mouse substantia nigra pars compacta neurons

Affiliations
Free article
Comparative Study

Neuronal activity regulates expression of tyrosine hydroxylase in adult mouse substantia nigra pars compacta neurons

Tim D Aumann et al. J Neurochem. 2011 Feb.
Free article

Abstract

Striatal delivery of dopamine (DA) by midbrain substantia nigra pars compacta (SNc) neurons is vital for motor control and its depletion causes the motor symptoms of Parkinson's disease. While membrane potential changes or neuronal activity regulates tyrosine hydroxylase (TH, the rate limiting enzyme in catecholamine synthesis) expression in other catecholaminergic cells, it is not known whether the same occurs in adult SNc neurons. We administered drugs known to alter neuronal activity to mouse SNc DAergic neurons in various experimental preparations and measured changes in their TH expression. In cultured midbrain neurons, blockade of action potentials with 1 μM tetrodotoxin decreased TH expression beginning around 20 h later (as measured in real time by green fluorescent protein (GFP) expression driven off TH promoter activity). By contrast, partial blockade of small-conductance, Ca(2+) -activated potassium channels with 300 nM apamin increased TH mRNA and protein between 12 and 24 h later in slices of adult midbrain. Two-week infusions of 300 nM apamin directly to the adult mouse midbrain in vivo also increased TH expression in SNc neurons, measured immunohistochemically. Paradoxically, the number of TH immunoreactive (TH+) SNc neurons decreased in these animals. Similar in vivo infusions of drugs affecting other ion-channels and receptors (L-type voltage-activated Ca(2+) channels, GABA(A) receptors, high K(+) , DA receptors) also increased or decreased cellular TH immunoreactivity but decreased or increased, respectively, the number of TH+ cells in SNc. We conclude that in adult SNc neurons: (i) TH expression is activity-dependent and begins to change ∼20 h following sustained changes in neuronal activity; (ii) ion-channels and receptors mediating cell-autonomous activity or synaptic input are equally potent in altering TH expression; and (iii) activity-dependent changes in TH expression are balanced by opposing changes in the number of TH+ SNc cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources