The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks

PLoS Genet. 2010 Dec 9;6(12):e1001238. doi: 10.1371/journal.pgen.1001238.

Abstract

We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter)) as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter) interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter) deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter) acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / chemistry
  • Bacillus subtilis / genetics
  • Bacillus subtilis / metabolism*
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Chromosomes, Bacterial / genetics*
  • Chromosomes, Bacterial / metabolism
  • DNA Replication*
  • DNA, Bacterial / genetics
  • DNA, Bacterial / metabolism*
  • DNA, Single-Stranded / genetics
  • DNA, Single-Stranded / metabolism
  • DNA-Binding Proteins / chemistry*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Protein Binding
  • Protein Structure, Tertiary

Substances

  • Bacterial Proteins
  • DNA, Bacterial
  • DNA, Single-Stranded
  • DNA-Binding Proteins