Wound healing can be improved by transplanting mesenchymal stem cells (MSCs). In this study, we have demonstrated the benefits of the conditioned medium derived from human MSCs (CM-MSC) in wound healing using an excisional wound model. CM-MSC accelerated wound closure with increased reepithelialization, cell infiltration, granulation formation, and angiogenesis. Notably, CM-MSC enhanced epithelial and endothelial cell migration, suggesting the contribution of increased cell migration to wound healing enhanced by CM-MSC. Cytokine array, ELISA analysis, and quantitative RT-PCR revealed high levels of IL-6 in CM-MSC. Moreover, IL-6 added to the preconditioned medium enhanced both cell migration and wound healing, and antibodies against IL-6 blocked the increase in cell motility and wound closure by CM-MSC. The IL-6 secretory pathway of MSCs was inhibited by SB203580, an inhibitor of p38 MAPK or siRNA against p38 MAPK, suggesting IL-6 secretion by MSCs is mediated through the activation of p38 MAPK. Inactivation of p38 MAPK also reduced the expression and production of IL-8 and CXCL1 by MSCs, both of which were also demonstrated to enhance cell migration and wound closure. Thus, our data suggest MSCs promote wound healing through releasing a repertoire of paracrine factors via activation of p38 MAPK, and the CM-MSC may be applied to enhance wound healing.