Regeneration of hair follicles is modulated by flightless I (Flii) in a rodent vibrissa model

J Invest Dermatol. 2011 Apr;131(4):838-47. doi: 10.1038/jid.2010.393. Epub 2010 Dec 30.

Abstract

Regeneration of cells, tissues, and organs has long captured the attention of researchers for its obvious potential benefits in biomedical applications. Although mammals are notoriously poor at regeneration compared with many lower-order species, the hair follicle, paradoxically a defining characteristic of mammals, is capable of regeneration following partial amputation. To investigate the role of a negative regulator of wound healing, flightless I (Flii), on hair follicle regeneration, the bulbar region of vibrissae from rats as well as strains of mice expressing low (Flii(+/-)), normal (Flii(+/+)), and high (FLII(Tg/Tg)) levels of Flii were surgically amputated, and then allowed to regenerate in vivo. Macroscopic and histological assessment of the regeneration process revealed impaired or delayed regenerative potential in Flii(+/-) follicles. Regenerated follicles expressing high levels of Flii (FLII(Tg/Tg)) produced significantly longer terminal hair fibers. Immunohistochemical analysis was used to characterize the pattern of expression of Flii, as well as markers of hair follicle development and wound healing-associated factors during hair follicle regeneration. These studies confirmed that Flii appears to have a positive role in the regeneration of hair follicles, contrary to its negative influence on wound healing in skin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Carrier Proteins
  • Cytoskeletal Proteins / genetics
  • Cytoskeletal Proteins / physiology*
  • Disease Models, Animal
  • Keratins / metabolism
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Mutant Strains
  • Microfilament Proteins / physiology*
  • Rats
  • Rats, Wistar
  • Regeneration / physiology*
  • Trans-Activators
  • Vibrissae* / growth & development
  • Vibrissae* / injuries
  • Vibrissae* / physiology
  • Wound Healing / physiology*

Substances

  • Biomarkers
  • Carrier Proteins
  • Cytoskeletal Proteins
  • FlII protein, mouse
  • Flii protein, rat
  • Microfilament Proteins
  • Trans-Activators
  • Keratins