Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance

Plant Cell. 2010 Dec;22(12):3963-79. doi: 10.1105/tpc.110.080010. Epub 2010 Dec 30.

Abstract

SODIUM POTASSIUM ROOT DEFECTIVE1 (NaKR1; previously called NPCC6) encodes a soluble metal binding protein that is specifically expressed in companion cells of the phloem. The nakr1-1 mutant phenotype includes high Na(+), K(+), Rb(+), and starch accumulation in leaves, short roots, late flowering, and decreased long-distance transport of sucrose. Using traditional and DNA microarray-based deletion mapping, a 7-bp deletion was found in an exon of NaKR1 that introduced a premature stop codon. The mutant phenotypes were complemented by transformation with the native gene or NaKR1-GFP (green fluorescent protein) and NaKR1-β-glucuronidase fusions driven by the native promoter. NAKR1-GFP was mobile in the phloem; it moved from companion cells into sieve elements and into a previously undiscovered symplasmic domain in the root meristem. Grafting experiments revealed that the high Na(+) accumulation was due mainly to loss of NaKR1 function in the leaves. This supports a role for the phloem in recirculating Na(+) to the roots to limit Na(+) accumulation in leaves. The onset of root phenotypes coincided with NaKR1 expression after germination. The nakr1-1 short root phenotype was due primarily to a decreased cell division rate in the root meristem, indicating a role in root meristem maintenance for NaKR1 expression in the phloem.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Exons
  • Meristem / physiology*
  • Metals, Heavy / metabolism*
  • Oligonucleotide Array Sequence Analysis
  • Phloem / physiology*
  • Plant Leaves / metabolism

Substances

  • Arabidopsis Proteins
  • Metals, Heavy

Associated data

  • GEO/GSE24385