Cardiovascular Comorbidities of Type 2 Diabetes Mellitus: Defining the Potential of Glucagonlike peptide-1-based Therapies

Am J Med. 2011 Jan;124(1 Suppl):S35-53. doi: 10.1016/j.amjmed.2010.11.004.


The global epidemic of diabetes mellitus (~95% type 2 diabetes) has been fueled by a parallel increase in obesity and overweight. Together, these metabolic disease epidemics have contributed to the increasing incidence and prevalence of cardiovascular disease. The accumulation of metabolic and cardiovascular risk factors in patients with type 2 diabetes--risk factors that may exacerbate one another--complicates treatment. Inadequate treatment, treatment that fails to achieve goals, increases the risk for cardiovascular morbidity and mortality. From a clinical perspective, type 2 diabetes is a cardiovascular disease, an observation that is supported by a range of epidemiologic, postmortem, and cardiovascular imaging studies. Vascular wall dysfunction, and particularly endothelial dysfunction, has been posited as a "common soil" linking dysglycemic and cardiovascular diseases. Vascular wall dysfunction promoted by environmental triggers (e.g., sedentary lifestyle) and metabolic triggers (chronic hyperglycemia, obesity) has been associated with the upregulation of reactive oxygen species and chronic inflammatory and hypercoagulable states, and as such with the pathogenesis of type 2 diabetes, atherosclerosis, and cardiovascular disease. Glucagon-like peptide-1 (GLP)-1, an incretin hormone, and synthetic GLP-1 receptor agonists represent promising new areas of research and therapeutics in the struggle not only against type 2 diabetes but also against the cardiovascular morbidity and mortality associated with type 2 diabetes. In a number of small trials in humans, as well as in preclinical and in vitro studies, both native GLP-1 and GLP-1 receptor agonists have demonstrated positive effects on a range of cardiovascular disease pathologies and clinical targets, including such markers of vascular inflammation as high-sensitivity C-reactive protein, plasminogen activator inhibitor-1, and brain natriuretic peptide. Reductions in markers of dyslipidemia such as elevated levels of triglycerides and free fatty acids have also been observed, as have cardioprotective functions. Larger trials of longer duration will be required to confirm preliminary findings. In large human trials, GLP-1 receptor agonists have been associated with significant reductions in both blood pressure and weight.

Publication types

  • Review

MeSH terms

  • Biomarkers / blood
  • Cardiovascular Diseases / blood
  • Cardiovascular Diseases / complications
  • Cardiovascular Diseases / drug therapy*
  • Diabetes Mellitus, Type 2 / blood
  • Diabetes Mellitus, Type 2 / complications
  • Diabetes Mellitus, Type 2 / drug therapy*
  • Glucagon-Like Peptide 1 / therapeutic use*
  • Humans
  • Incretins / therapeutic use*
  • Treatment Outcome


  • Biomarkers
  • Incretins
  • Glucagon-Like Peptide 1