Analysis of Expressed Sequence Tags From Maize Mosaic Rhabdovirus-Infected Gut Tissues of Peregrinus Maidis Reveals the Presence of Key Components of Insect Innate Immunity

Insect Mol Biol. 2011 Apr;20(2):225-42. doi: 10.1111/j.1365-2583.2010.01060.x. Epub 2011 Jan 4.

Abstract

The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate defence response pathways to rhabdovirus infection.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Expressed Sequence Tags*
  • Gastrointestinal Tract / immunology
  • Gastrointestinal Tract / virology
  • Gene Expression Profiling
  • Gene Library
  • Genes, Insect
  • Hemiptera / genetics*
  • Hemiptera / immunology*
  • Hemiptera / virology
  • Immunity, Innate
  • Insect Viruses / physiology
  • Molecular Sequence Data
  • Rhabdoviridae*