Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world's oceans: calls to validate the names 'Nitrosococcus halophilus' and 'Nitrosomonas mobilis'

FEMS Microbiol Ecol. 2011 Apr;76(1):39-48. doi: 10.1111/j.1574-6941.2010.01027.x. Epub 2011 Jan 11.


Local associations between anammox bacteria and obligate aerobic bacteria in the genus Nitrosococcus appear to be significant for ammonia oxidation in oxygen minimum zones. The literature on the genus Nitrosococcus in the Chromatiaceae family of purple sulfur bacteria (Gammaproteobacteria, Chromatiales) contains reports on four described species, Nitrosococcus nitrosus, Nitrosococcus oceani, 'Nitrosococcus halophilus' and 'Nitrosomonas mobilis', of which only N. nitrosus and N. oceani are validly published names and only N. oceani is omnipresent in the world's oceans. The species 'N. halophilus' with Nc4(T) as the type strain was proposed in 1990, but the species is not validly published. Phylogenetic analyses of signature genes, growth-physiological studies and an average nucleotide identity analysis between N. oceani ATCC19707(T) (C-107, Nc9), 'N. halophilus' strain Nc4(T) and Nitrosococcus sp. strain C-113 revealed that a proposal for a new species is warranted. Therefore, the provisional taxonomic assignment Nitrosococcus watsonii is proposed for Nitrosococcus sp. strain C-113(T) . Sequence analysis of Nitrosococcus haoAB signature genes detected in cultures enriched from Jiaozhou Bay sediments (China) identified only N. oceani-type sequences, suggesting that different patterns of distribution in the environment correlate with speciation in the genus Nitrosococcus.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ammonia / metabolism*
  • China
  • Chromatiaceae / classification
  • Chromatiaceae / genetics
  • Chromatiaceae / metabolism
  • Cloning, Molecular
  • DNA, Bacterial / genetics
  • Ecosystem
  • Nitrosomonas / classification*
  • Nitrosomonas / genetics
  • Nitrosomonas / metabolism
  • Oxidation-Reduction
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA


  • DNA, Bacterial
  • RNA, Ribosomal, 16S
  • Ammonia