Poly(ADP-ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic

CA Cancer J Clin. Jan-Feb 2011;61(1):31-49. doi: 10.3322/caac.20095. Epub 2011 Jan 4.

Abstract

Poly(ADP-ribose) polymerase (PARP) is an attractive antitumor target because of its vital role in DNA repair. The homologous recombination (HR) DNA repair pathway is critical for the repair of DNA double-strand breaks and HR deficiency leads to a dependency on error-prone DNA repair mechanisms, with consequent genomic instability and oncogenesis. Tumor-specific HR defects may be exploited through a synthetic lethal approach for the application of anticancer therapeutics, including PARP inhibitors. This theory proposes that targeting genetically defective tumor cells with a specific molecular therapy that inhibits its synthetic lethal gene partner should result in selective tumor cell killing. The demonstration of single-agent antitumor activity and the wide therapeutic index of PARP inhibitors in BRCA1 and BRCA2 mutation carriers with advanced cancers provide strong evidence for the clinical application of this approach. Emerging data also indicate that PARP inhibitors may be effective in sporadic cancers bearing HR defects, supporting a substantially wider role for PARP inhibitors. Drugs targeting this enzyme are now in pivotal clinical trials in patients with sporadic cancers. In this article, the evidence supporting this antitumor synthetic lethal strategy with PARP inhibitors is reviewed, evolving resistance mechanisms and potential molecular predictive biomarker assays are discussed, and the future development of these agents is envisioned.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • DNA Repair / drug effects
  • DNA, Neoplasm / drug effects
  • Enzyme Inhibitors / pharmacology*
  • Enzyme Inhibitors / therapeutic use
  • Humans
  • Neoplasms / drug therapy*
  • Neoplasms / enzymology
  • Poly(ADP-ribose) Polymerase Inhibitors*

Substances

  • Antineoplastic Agents
  • DNA, Neoplasm
  • Enzyme Inhibitors
  • Poly(ADP-ribose) Polymerase Inhibitors