Expansion of myeloid blasts with suppression of normal hematopoiesis is a hallmark of acute myeloid leukemia (AML). In contrast, myeloproliferative neoplasms (MPNs) are clonal disorders characterized by overproliferation of one or more lineages that retain the ability to differentiate. Juvenile myelomonocytic leukemia (JMML) is an aggressive MPN of childhood that is clinically characterized by the overproduction of monocytic cells that can infiltrate organs, including the spleen, liver, gastrointestinal tract, and lung. Major progress in understanding the pathogenesis of JMML has been achieved by mapping out the genetic lesions that occur in patients. The spectrum of mutations described thus far in JMML occur in genes that encode proteins that signal through the Ras/mitogen-activated protein kinase (MAPK) pathways, thus providing potential new opportunities for both diagnosis and therapy. These genes include NF1, NRAS, KRAS, PTPN11, and, most recently, CBL. While the current standard of care for patients with JMML relies on allogeneic hematopoietic stem-cell transplant, relapse is the most frequent cause of treatment failure. Rarely, spontaneous resolution of this disorder can occur but is unpredictable. This review is focused on the genetic abnormalities that occur in JMML, with particular attention to germ-line predisposition syndromes associated with the disorder. Current approaches to therapy are also discussed.