Recent studies suggest that SIPA1 encoding a Rap GTPase-activating protein SPA-1 is a candidate metastasis efficiency-modifying gene in human breast cancer. In this study, we investigated the expression and function of SPA-1 in human prostate cancer (CaP). Immunohistochemical studies of tumor specimens from CaP patients revealed a positive correlation of SPA-1 expression with disease progression and metastasis. The correlation was recapitulated in human CaP cell lines; LNCaP that rarely showed metastasis in SCID mice expressed an undetectable level of SPA-1, whereas highly metastatic PC3 showed abundant SPA-1 expression. Moreover, SIPA1 transduction in LNCaP caused prominent abdominal lymph node metastasis without affecting primary tumor size, whereas shRNA-mediated SIPA1 knockdown or expression of a dominant-active Rap1 mutant (Rap1V12) in PC3 suppressed metastasis. LNCaP transduced with SPA-1 (LNCaP/SPA-1) showed attenuated adhesion to the precoated extracellular matrices (ECM) including collagens and fibronectin, due to defective ECM-medicated Rap1 activation. In addition, LNCaP/SPA-1 showed a diminished level of nuclear Brd4, which is known to bind SPA-1, resulting in reduced expression of a series of ECM-related genes. These results suggest that SPA-1 plays an important role in controlling metastasis efficiency of human CaP by regulating the expression of and interaction with ECM in the primary sites.
© 2011 Japanese Cancer Association.