Common cardiovascular medications in cancer therapeutics

Pharmacol Ther. 2011 May;130(2):177-90. doi: 10.1016/j.pharmthera.2011.01.009. Epub 2011 Jan 26.

Abstract

Cardiac glycosides, statins, β-blockers, angiotensin-I converting enzyme inhibitors (ACEIs), and angiotensin II type 1 receptor blockers (ARBs) are widely used cardiovascular medications with pleiotropic properties. Many of these medications have been investigated in other diseases, including cancer. Cardiac glycosides and statins have advanced to clinical trial testing in cancer therapeutics, with variable success. Early observations in breast cancer were consistent with a more benign histologic phenotype among women taking digitalis compared to their counterparts who did not receive cardiac glycosides. Cardiac glycosides can induce apoptosis in cancer cells through various mechanisms and sensitize them to the effects of antitumor therapy. By blocking the generation of prenyl units, statins impair prenylation, an important posttranslational modification of proteins whose function depends on membrane anchoring. Statins also impair protein folding and N-glycosylation and inhibit the upregulation of cholesterol synthesis associated with chemotherapy resistance. Stress and catecholamine release promote tumor growth and angiogenesis, effects that can be mitigated by β-blockers. Components of the renin-angiotensin-aldosterone system are expressed in various cancers and are involved in carcinogenesis and tumor progression. Angiotensin II has potent mitogenic and angiogenic properties that can be blocked with ACEIs and ARBs. Although it is unclear whether the promising preclinical activity of many cardiovascular medications has clinically meaningful implications beyond the benefit in cardiovascular morbidity and mortality, the prevention or improvement of prognosis of common malignancies with medications known to reduce cardiovascular morbidity and mortality is encouraging and deserves further clinical investigation.

Publication types

  • Review

MeSH terms

  • Adrenergic beta-Antagonists / pharmacology
  • Adrenergic beta-Antagonists / therapeutic use*
  • Angiotensin II Type 1 Receptor Blockers / pharmacology
  • Angiotensin II Type 1 Receptor Blockers / therapeutic use*
  • Angiotensin-Converting Enzyme Inhibitors / pharmacology
  • Angiotensin-Converting Enzyme Inhibitors / therapeutic use*
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use*
  • Cardiac Glycosides / pharmacology
  • Cardiac Glycosides / therapeutic use*
  • Clinical Trials as Topic
  • Drug Evaluation, Preclinical
  • Humans
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / therapeutic use*
  • Models, Biological
  • Neoplasms / drug therapy*

Substances

  • Adrenergic beta-Antagonists
  • Angiotensin II Type 1 Receptor Blockers
  • Angiotensin-Converting Enzyme Inhibitors
  • Antineoplastic Agents
  • Cardiac Glycosides
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors