Wide control of proton conductivity in porous coordination polymers

J Am Chem Soc. 2011 Feb 23;133(7):2034-6. doi: 10.1021/ja109810w. Epub 2011 Feb 1.

Abstract

The proton conductivities of the porous coordination polymers M(OH)(bdc-R) [H(2)bdc = 1,4-benzenedicarboxylic acid; M = Al, Fe; R = H, NH(2), OH, (COOH)(2)] were investigated under humid conditions. Good correlations among pK(a), proton conductivity, and activation energy were observed. Fe(OH)(bdc-(COOH)(2)), having carboxy group and the lowest pK(a), showed the highest proton conductivity and the lowest activation energy in this system. This is the first example in which proton conductivity has been widely controlled by substitution of ligand functional groups in an isostructural series.