Long Nonprotein-Coding RNAs in Plants

Prog Mol Subcell Biol. 2011;51:179-200. doi: 10.1007/978-3-642-16502-3_9.


In recent years, nonprotein-coding RNAs (or npcRNAs) have emerged as a major part of the eukaryotic transcriptome. Many new regulatory npcRNAs or riboregulators riboregulators have been discovered and characterized due to the advent of new genomic approaches. This growing number suggests that npcRNAs could play a more important role than previously believed and significantly contribute to the generation of evolutionary complexity in multicellular organisms. Regulatory npcRNAs range from small RNAs (si/miRNAs) to very large transcripts (or long npcRNAs) and play diverse functions in development and/or environmental stress responses. Small RNAs include an expanding number of 20-40 nt RNAs that function in the regulation of gene expression by affecting mRNA decay and translational inhibition or lead to DNA methylation and gene silencing. They generally involve double-stranded RNA or stem loops and imply transcriptional or posttranscriptional gene silencing (PTGS). RNA silencing besides small interfering RNA and microRNA, gene silencing in plants is also mediated by tasiRNAs (trans-acting siRNAs) and nat-siRNAs (natural antisense mediated siRNAs). In contrast to small RNAs, much less is known about the large and diverse population of long npcRNAs, and only a few have been implicated in diverse functions such as abiotic stress responses, nodulation and flower development, and sex chromosome-specific expression. Moreover, many long npcRNAs act as antisense transcripts or are substrates of the small RNA pathways, thus interfering with a variety of RNA-related metabolisms. An emerging hypothesis is that long npcRNAs, as shown for small si/miRNAs, integrate into ribonucleoprotein particles (RNPs) to modulate their function, localization, or stability to act on target mRNAs. As plants show a remarkable developmental plasticity to adapt their growth to changing environmental conditions, understanding how npcRNAs work may reveal novel mechanisms involved in growth control and differentiation and help to design new tools for biotechnological applications.

MeSH terms

  • Gene Expression Regulation, Plant
  • MicroRNAs / genetics
  • Plants* / genetics
  • RNA, Long Noncoding*
  • RNA, Plant / genetics
  • RNA, Small Interfering / genetics
  • RNA, Untranslated / genetics


  • MicroRNAs
  • RNA, Long Noncoding
  • RNA, Plant
  • RNA, Small Interfering
  • RNA, Untranslated