Branching morphogenesis in murine submandibular glands (SMG) is regulated by growth factors, extracellular matrix (ECM) and many biological processes through interactions between the epithelium and the mesenchyme. MicroRNAs (miRNAs) are a set of small, non-protein-coding RNAs that regulate gene expression at the post-transcriptional level. We hypothesized that branching morphogenesis is partly regulated by miRNAs. Forty-four miRNAs and novel miRNA candidates were detected in SMG at embryonic day 13 by a cloning method combined with Argonaute-2 immunoprecipitation. MicroRNA21 (miR-21) expression in the mesenchyme was up-regulated and accelerated by epidermal growth factor, which is known to enhance branching morphogenesis in vitro. Down-regulation of miR-21 in the mesenchyme by locked nucleic acids was associated with a decrease in the number of epithelial buds. Relative quantification of candidates for target genes of miR-21 indicated that two messenger RNAs (for Reck and Pdcd4) were down-regulated in the mesenchyme, where miR-21 expression levels were up-regulated. These results suggest that branching morphogenesis is regulated by miR-21 through gene expression related to ECM degradation in the mesenchyme.
Copyright © 2011 Elsevier Inc. All rights reserved.