β-catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii
- PMID: 21303849
- PMCID: PMC3035098
- DOI: 10.1242/dev.059493
β-catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii
Abstract
The canonical Wnt/β-catenin pathway is a key regulator of body plan organization and axis formation in metazoans, being involved in germ layer specification, posterior growth and patterning of the anteroposterior axis. Results from animals spanning a wide phylogenetic range suggest that a unifying function of β-catenin in metazoans is to define the posterior/vegetal part of the embryo. Although the specification of vegetal territories (endoderm) by β-catenin has been demonstrated in distantly related animals (cnidarians, a protostome, echinoderms and ascidians), the definition of the posterior part of the embryo is well supported only for vertebrates and planarians. To gain insights into β-catenin functions during deuterostome evolution, we have studied the early development of the direct developing hemichordate Saccoglossus kowalevskii. We show that the zygote is polarized after fertilization along the animal-vegetal axis by cytoplasmic rearrangements resembling the ascidian vegetal contraction. This early asymmetry is translated into nuclear accumulation of β-catenin at the vegetal pole, which is necessary and sufficient to specify endomesoderm. We show that endomesoderm specification is crucial for anteroposterior axis establishment in the ectoderm. The endomesoderm secretes as yet unidentified signals that posteriorize the ectoderm, which would otherwise adopt an anterior fate. Our results point to a conserved function at the base of deuterostomes for β-catenin in germ layer specification and to a causal link in the definition of the posterior part of the embryonic ectoderm by way of activating posteriorizing endomesodermal factors. Consequently, the definition of the vegetal and the posterior regions of the embryo by β-catenin should be distinguished and carefully re-examined.
Figures
Similar articles
-
FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii.Development. 2013 Mar;140(5):1024-33. doi: 10.1242/dev.083790. Epub 2013 Jan 23. Development. 2013. PMID: 23344709 Free PMC article.
-
Patterning and lineage specification in the amphibian embryo.Curr Top Dev Biol. 2001;51:1-67. doi: 10.1016/s0070-2153(01)51001-7. Curr Top Dev Biol. 2001. PMID: 11236711 Review.
-
Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms).Dev Biol. 2011 Jun 1;354(1):173-90. doi: 10.1016/j.ydbio.2011.03.030. Epub 2011 Apr 3. Dev Biol. 2011. PMID: 21466800
-
Beta-catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus.Dev Biol. 2008 May 1;317(1):368-79. doi: 10.1016/j.ydbio.2008.02.042. Epub 2008 Mar 5. Dev Biol. 2008. PMID: 18387602
-
Specification and positioning of the anterior neuroectoderm in deuterostome embryos.Genesis. 2014 Mar;52(3):222-34. doi: 10.1002/dvg.22759. Epub 2014 Mar 6. Genesis. 2014. PMID: 24549984 Review.
Cited by
-
Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway.Dongwuxue Yanjiu. 2016 May 18;37(3):136-43. doi: 10.13918/j.issn.2095-8137.2016.3.136. Dongwuxue Yanjiu. 2016. PMID: 27265651 Free PMC article.
-
An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.Development. 2016 May 1;143(9):1523-33. doi: 10.1242/dev.128165. Epub 2016 Mar 7. Development. 2016. PMID: 26952978 Free PMC article.
-
DNA interference-mediated screening of maternal factors in the chordate Oikopleura dioica.Sci Rep. 2017 Mar 10;7:44226. doi: 10.1038/srep44226. Sci Rep. 2017. PMID: 28281645 Free PMC article.
-
The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization.Sci Rep. 2023 Jun 9;13(1):9382. doi: 10.1038/s41598-023-35979-8. Sci Rep. 2023. PMID: 37296138 Free PMC article.
-
Ancient deuterostome origins of vertebrate brain signalling centres.Nature. 2012 Mar 14;483(7389):289-94. doi: 10.1038/nature10838. Nature. 2012. PMID: 22422262 Free PMC article.
References
-
- Angerer L. M., Angerer R. C. (2003). Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Curr. Top. Dev. Biol. 53, 159-198 - PubMed
-
- Aronowicz J., Lowe C. J. (2006). Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr. Comp. Biol. 46, 890-901 - PubMed
-
- Broun M., Gee L., Reinhardt B., Bode H. R. (2005). Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132, 2907-2916 - PubMed
-
- Colwin A. L., Colwin L. H. (1951). Relationships between the egg and larva of saccoglossus kowalevskii (enteropneusta): Axes and planes; general prospective significance of the early blastomeres. J. Exp. Zool. 117, 111-137
-
- Colwin A. L., Colwin L. H. (1953). The normal embryology of Saccoglossus kowalevskii (enteropneusta). J. Morphol. 92, 401-453
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
