Multimodality imaging of abnormal vascular perfusion and morphology in preclinical 9L gliosarcoma model

PLoS One. 2011 Jan 31;6(1):e16621. doi: 10.1371/journal.pone.0016621.


Background: This study demonstrates that a dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) perfusion parameter may indicate vascular abnormality in a brain tumor model and reflects an effect of dexamethasone treatment. In addition, X-ray computed tomography (CT) measurements of vascular tortuosity and tissue markers of vascular morphology were performed to investigate the underpinnings of tumor response to dexamethasone.

Methodology/principal findings: One cohort of Fisher 344 rats (N = 13), inoculated intracerebrally with 9L gliosarcoma cells, was treated with dexamethasone (i.p. 3 mg/kg/day) for five consecutive days, and another cohort (N = 11) was treated with equal volume of saline. Longitudinal DSC-MRI studies were performed at the first (baseline), third and fifth day of treatments. Relative cerebral blood volume (rCBV) was significantly reduced on the third day of dexamethasone treatment (0.65 ± .13) as compared to the fifth day during treatment (1.26 ±.19, p < 0.05). In saline treated rats, relative CBV gradually increased during treatment (0.89 ±.13, 1.00 ± .21, 1.13 ± .23) with no significant difference on the third day of treatment (p>0.05). In separate serial studies, microfocal X-ray CT of ex vivo brain specimens (N = 9) and immunohistochemistry for endothelial cell marker anti-CD31 (N = 8) were performed. Vascular morphology of ex vivo rat brains from micro-CT analysis showed hypervascular characteristics in tumors, and both vessel density (41.32 ± 2.34 branches/mm(3), p<0.001) and vessel tortuosity (p<0.05) were significantly reduced in tumors of rats treated with dexamethasone compared to saline (74.29 ± 3.51 branches/mm(3)). The vascular architecture of rat brain tissue was examined with anti-CD31 antibody, and dexamethasone treated tumor regions showed reduced vessel area (16.45 ± 1.36 µm(2)) as compared to saline treated tumor regions (30.83 ± 4.31 µm(2), p<0.001) and non-tumor regions (22.80 ± 1.11 µm(2), p<0.01).

Conclusions/significance: Increased vascular density and tortuosity are culprit to abnormal perfusion, which is transiently reduced during dexamethasone treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Vessels / pathology*
  • Cerebrovascular Circulation
  • Dexamethasone / pharmacology
  • Disease Models, Animal
  • Gliosarcoma / blood supply*
  • Gliosarcoma / pathology
  • Magnetic Resonance Imaging / methods
  • Perfusion
  • Platelet Endothelial Cell Adhesion Molecule-1 / analysis
  • Rats
  • Rats, Inbred F344
  • Tomography, X-Ray Computed


  • Platelet Endothelial Cell Adhesion Molecule-1
  • Dexamethasone