The localized plasmons of metallic nanoparticles and nanostructures are known to display an interesting and apparently universal phenomenon: upon optical excitation, the maximum near-field enhancements occur at lower energies than the maximum of the corresponding far-field spectrum. Here we present an explanation for this behavior, showing that it results directly from the physics of a driven and damped harmonic oscillator. We show that the magnitude of the shift between the near- and far-field peak intensities depends directly on the total damping of the system, whether it is intrinsic damping within the metal of the nanoparticle or radiative damping of the localized plasmon.