Targeting bacterial membranes: identification of Pseudomonas aeruginosa D-arabinose-5P isomerase and NMR characterisation of its substrate recognition and binding properties

Chembiochem. 2011 Mar 21;12(5):719-27. doi: 10.1002/cbic.201000754. Epub 2011 Feb 17.

Abstract

The identification and characterisation of Pseudomonas aeruginosa KdsD (Pa-KdsD), a D-arabinose-5P isomerase involved in the biosynthesis of 3-deoxy-D-manno-oct-2-ulosonic acid and thus of lipopolysaccharide (LPS), are reported. We have demonstrated that KdsD is essential for P. aeruginosa survival and thus represents a key target for the development of novel antibacterial drugs. The key amino acid residues for protein activity have been identified. The structural requirements for substrate recognition and binding have been characterised for the wild-type protein, and the effect of mutations of the key residues on catalytic activity and binding have been evaluated by saturation transfer difference (STD) NMR spectroscopy. Our data provide important structural information for the rational design of new KdsD inhibitors as potential antibacterial drugs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldose-Ketose Isomerases / genetics
  • Aldose-Ketose Isomerases / metabolism*
  • Genes, Bacterial
  • Mutation
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Binding
  • Pseudomonas aeruginosa / enzymology*
  • Pseudomonas aeruginosa / genetics
  • Substrate Specificity

Substances

  • Aldose-Ketose Isomerases
  • arabinose-5-phosphate isomerase