Variance as a Signature of Neural Computations During Decision Making

Neuron. 2011 Feb 24;69(4):818-31. doi: 10.1016/j.neuron.2010.12.037.

Abstract

Traditionally, insights into neural computation have been furnished by averaged firing rates from many stimulus repetitions or trials. We pursue an analysis of neural response variance to unveil neural computations that cannot be discerned from measures of average firing rate. We analyzed single-neuron recordings from the lateral intraparietal area (LIP), during a perceptual decision-making task. Spike count variance was divided into two components using the law of total variance for doubly stochastic processes: (1) variance of counts that would be produced by a stochastic point process with a given rate, and loosely (2) the variance of the rates that would produce those counts (i.e., "conditional expectation"). The variance and correlation of the conditional expectation exposed several neural mechanisms: mixtures of firing rate states preceding the decision, accumulation of stochastic "evidence" during decision formation, and a stereotyped response at decision end. These analyses help to differentiate among several alternative decision-making models.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Computer Simulation*
  • Decision Making / physiology*
  • Haplorhini
  • Models, Neurological*
  • Motion Perception / physiology
  • Neurons / physiology*
  • Numerical Analysis, Computer-Assisted
  • Photic Stimulation
  • Reaction Time / physiology
  • Statistics as Topic
  • Stochastic Processes
  • Time Factors