A stochastic analysis of the repair of radiation-induced DNA double-strand breaks

Math Biosci. 1990 Jun;100(1):21-31. doi: 10.1016/0025-5564(90)90045-z.

Abstract

A three-state stochastic model is described for the repair of radiation-induced double-strand breaks (DSBs) in DNA. If irradiated, a site or region in DNA is assumed to be in a potentially damaged state; this site may either become permanently damaged or be repaired after a certain period of time. The result of the analysis of the available experimental data reveals that the present two-parameter model is capable of interpreting the rapid decrease in the number of DSBs in the initial period, which cannot be predicted by previously proposed models. The stochastic analysis yields not only the temporal variation of the mean of the number of DSBs but also its variance, and therefore is a generalization of the conventional deterministic models.

MeSH terms

  • DNA / radiation effects
  • DNA Damage
  • DNA Repair / physiology*
  • Models, Biological
  • Stochastic Processes

Substances

  • DNA