Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;20(3):317-20.
doi: 10.1002/pds.2074. Epub 2010 Dec 9.

The role of the c-statistic in variable selection for propensity score models

Affiliations

The role of the c-statistic in variable selection for propensity score models

Daniel Westreich et al. Pharmacoepidemiol Drug Saf. 2011 Mar.

Abstract

The applied literature on propensity scores has often cited the c-statistic as a measure of the ability of the propensity score to control confounding. However, a high c-statistic in the propensity model is neither necessary nor sufficient for control of confounding. Moreover, use of the c-statistic as a guide in constructing propensity scores may result in less overlap in propensity scores between treated and untreated subjects; this may require the analyst to restrict populations for inference. Such restrictions may reduce precision of estimates and change the population to which the estimate applies. Variable selection based on prior subject matter knowledge, empirical observation, and sensitivity analysis is preferable and avoids many of these problems.

PubMed Disclaimer

Conflict of interest statement

Conflicts None declared

Similar articles

Cited by

References

    1. Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59(5):437–47. - PubMed
    1. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41–55.
    1. Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol. 2010 - PMC - PubMed
    1. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med. 2010;29(3):337–46. - PMC - PubMed
    1. D’Agostino RB., Jr Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17(19):2265–81. - PubMed

Publication types

MeSH terms