Glucose handling by the kidney

Kidney Int Suppl. 2011 Mar;(120):S1-6. doi: 10.1038/ki.2010.509.


The kidney contributes to glucose homeostasis through processes of gluconeogenesis, glucose filtration, glucose reabsorption, and glucose consumption. Each of these processes can be altered in patients with type-2 diabetes (T2DM), providing potential targets for novel therapies. Recent studies have indicated that the kidney is responsible for up to 20% of all glucose production via gluconeogenesis. In patients with T2DM, overall glucose production increases by as much as 300%, with equal contributions from hepatic and renal sources. This increased production contributes not only to increased fasting glucose in T2DM patients but also to raised postprandial glucose because, in contrast to the liver, glucose ingestion increases renal gluconeogenesis. Under normal circumstances, up to 180 g/day of glucose is filtered by the renal glomerulus and virtually all of it is subsequently reabsorbed in the proximal convoluted tubule. This reabsorption is effected by two sodium-dependent glucose cotransporter (SGLT) proteins. SGLT2, situated in the S1 segment, is a low-affinity high-capacity transporter reabsorbing up to 90% of filtered glucose. SGLT1, situated in the S3 segment, is a high-affinity low-capacity transporter reabsorbing the remaining 10%. In patients with T2DM, renal reabsorptive capacity maladaptively increases from a normal level of 19.5 to 23.3 mmol/l/min. Once glucose has been reabsorbed into the tubular epithelial cells, it diffuses into the interstitium across specific facilitative glucose transporters (GLUTs). GLUT1 and GLUT2 are associated with SGLT1 and SGLT2, respectively.

Publication types

  • Review

MeSH terms

  • Blood Glucose / metabolism*
  • Diabetes Mellitus, Type 2 / metabolism*
  • Gluconeogenesis / physiology*
  • Homeostasis*
  • Humans
  • Kidney / metabolism*
  • Monosaccharide Transport Proteins / metabolism*


  • Blood Glucose
  • Monosaccharide Transport Proteins