Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Feb 16;6(2):e16957.
doi: 10.1371/journal.pone.0016957.

The Human Serum Metabolome

Affiliations
Free PMC article
Comparative Study

The Human Serum Metabolome

Nikolaos Psychogios et al. PLoS One. .
Free PMC article

Abstract

Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Typical 500 MHz 1H-NMR spectrum of healthy human serum.
Numbers indicate the following metabolites: 1, imidazole; 2, urea; 3, D-glucose; 4, L-lactic acid; 5, glycerol; 6, L-glutamine; 7, L-alanine; 8, DSS; 9, glycine; 10, L-glutamic acid; 11, L-valine; 12, L-proline; 13, L-lysine; 14, L-histidine; 15, L-threonine; 16, propylene glycol; 17, L-leucine; 18, L-tyrosine; 19, L-phenylalanine; 20, methanol; 21,creatinine; 22, 3-hydroxybutyric acid; 23, ornithine; 24, L-isoleucine; 25, citric acid; 26, acetic acid; 27, carnitine; 28, 2-hydroxybutyric acid; 29, creatine; 30, betaine; 31, formic acid; 32, isopropyl alcohol; 33, pyruvic acid; 34, choline; 35, acetone; 36, glycerol.
Figure 2
Figure 2. Typical total ion chromatogram of serum from a healthy subject.
Numbers indicate the following metabolites: 1, L-lactic acid; 2, L-alanine; 3, oxalic acid; 4, L-valine; 5, urea; 6, L- L- L-leucine; 7, glycerol; 8, phosphoric acid; 9, L-isoleucine; 10, L-proline; 11, glycine; 12, L- L- L-serine; 13, L-threonine; 14, L-methionine/L-aspartic acid; 15, aminomalonic acid; 16, pyroglutamic acid/L-glutamine; 17, L-glutamic acid; 18, L-phenylalanine; 19, L-ornithine; 20, citric acid; 21,d-erythrofuranose; 22, D-fructose; 23, D-glucose; 24, D-galactose; 25, L-histidine; 26, L-lysine; 27, L-tyrosine; 28, gulonic acid/mannonic acid; 29, D-glucopyranose; 30, 6-deoxy mannose; 31, palmitelaidic acid; 32, palmitic acid; 33, myo-inositol; 34, uric acid; 35, L-tryptophan; 36, linoleic acid; 37, oleic acid; 38, stearic acid.
Figure 3
Figure 3. Venn diagram showing the overlap of serum metabolites detected by global NMR, GC–MS, LC/GC-FID, LC-ESI-MS/MS and MS/MS methods compared to the detectable serum metabolome.
Figure 4
Figure 4. Graphical representation of serum concentrations of amino acids by NMR, GC/MS and MS/MS (Biocrates kit).
The error bars reflect 1 standard deviation.

Similar articles

See all similar articles

Cited by 394 articles

See all "Cited by" articles

References

    1. Hollywood K, Brison DR, Goodacre R. Metabolomics: Current technologies and future trends. Proteomics. 2006;6:4716–4723. - PubMed
    1. Wishart DS. Current Progress in computational metabolomics. Briefings in Bioinformatics. 2007;8:279–293. - PubMed
    1. Wishart DS. Quantitative metabolomics using NMR. Trac-Trends in Analytical Chemistry. 2008;27:228–237.
    1. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–526. - PMC - PubMed
    1. Wishart DS, Knox C, Guo AC, Eisner R, Young N, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37:D603–610. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources

Feedback