A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots

ACS Nano. 2011 Mar 22;5(3):2026-35. doi: 10.1021/nn2002689. Epub 2011 Mar 1.

Abstract

A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cadmium Compounds / chemistry*
  • Computer-Aided Design*
  • Equipment Design
  • Equipment Failure Analysis
  • Light
  • Quantum Dots*
  • Scattering, Radiation
  • Selenium Compounds / chemistry*

Substances

  • Cadmium Compounds
  • Selenium Compounds
  • cadmium selenide