The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles

Photosynth Res. 2011 Sep;109(1-3):133-49. doi: 10.1007/s11120-011-9635-3. Epub 2011 Mar 2.


Aquatic photosynthetic organisms, such as the green alga Chlamydomonas reinhardtii, respond to low CO(2) conditions by inducing a CO(2) concentrating mechanism (CCM). Carbonic anhydrases (CAs) are important components of the CCM. CAs are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO(2) and HCO(3)(-). In C. reinhardtii, there are at least 12 genes that encode CA isoforms, including three alpha, six beta, and three gamma or gamma-like CAs. The expression of the three alpha and six beta genes has been measured from cells grown on elevated CO(2) (having no active CCM) versus cells growing on low levels of CO(2) (with an active CCM) using northern blots, differential hybridization to DNA chips and quantitative RT-PCR. Recent RNA-seq profiles add to our knowledge of the expression of all of the CA genes. In addition, protein content for some of the CA isoforms was estimated using antibodies corresponding to the specific CA isoforms: CAH1/2, CAH3, CAH4/5, CAH6, and CAH7. The intracellular location of each of the CA isoforms was elucidated using immunolocalization and cell fractionation techniques. Combining these results with previous studies using CA mutant strains, we will discuss possible physiological roles of the CA isoforms concentrating on how these CAs might contribute to the acquisition and retention of CO(2) in C. reinhardtii.

Publication types

  • Review

MeSH terms

  • Biological Evolution
  • Carbon Dioxide / metabolism*
  • Carbonic Anhydrases / genetics
  • Carbonic Anhydrases / metabolism*
  • Chlamydomonas reinhardtii / enzymology*
  • Chlamydomonas reinhardtii / genetics
  • Chlamydomonas reinhardtii / physiology*
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Mutation
  • Photosynthesis / physiology*
  • Phylogeny
  • Plant Proteins / genetics
  • Plant Proteins / metabolism


  • Isoenzymes
  • Plant Proteins
  • Carbon Dioxide
  • Carbonic Anhydrases