Multi-electron-acceptor dyad and triad systems based on perylene bisimides and fullerenes

Chemistry. 2011 Mar 21;17(13):3759-67. doi: 10.1002/chem.201003092. Epub 2011 Mar 1.

Abstract

Fullerene (C(60)) and 3,4,9,10-perylene tetracarboxylic diimide (PTDCI) were used as building blocks for an electron acceptor dyad (C(60)-PTCDI) and triad (C(60)-PTCDI-C(60)). As the first reduction potentials for C(60) and PTCDI are very close, simultaneous introduction of two or three electrons is possible into the dyad and triad, respectively. Further stepwise electrochemical reduction leads to formation of a series of well-defined anionic species in which electrons associated with the fullerene or the PTDCI components of the molecule can be clearly distinguished. In total, up to four electrons can be reversibly injected into the dyad C(60)-PTCDI and up to six into the triad C(60)-PTCDI-C(60) system. The optical absorption properties in the UV/Vis range are also crucially defined by the distribution of electrons between the acceptor parts, as the injection/removal of electrons causes drastic colour changes in the dyad and the triad systems.