Main-chain boron-containing oligophenylenes via ring-opening polymerization of 9-H-9-borafluorene

J Am Chem Soc. 2011 Mar 30;133(12):4596-609. doi: 10.1021/ja110947k. Epub 2011 Mar 2.

Abstract

9-H-9-Borafluorene (H(8)C(12)BH; 5) can be generated in situ from 9-Br-9-borafluorene and Et(3)SiH in benzene or hexane. Monitoring of the reaction by NMR spectroscopy at rt in C(6)D(6) reveals that 5 forms C(1)-symmetric dimers (5)(2) under these conditions. DFT calculations on conceivable isomers of (5)(2) and a comparison of calculated and experimentally determined (1)H, (13)C, and (11)B NMR shift values lead to the conclusion that (5)(2) is not a classical dimer H(8)C(12)B(μ-H)(2)BC(12)H(8), but contains one B-H-B three-center, two-electron bond together with a boron-bridging phenyl ring. Addition of 1 equiv of pyridine to (5)(2) leads to the clean formation of the pyridine adduct H(8)C(12)BH(py) (5·py). Likewise, (5)(2) can be employed in hydroboration reactions, as evidenced by its transformation with 0.5 equiv of tert-butylacetylene, which gives the hydroboration products tBuC(H)(2)C(H)(BC(12)H(8))(2) (9) and tBuC(H)C(H)BC(12)H(8) in almost quantitative yield. (5)(2) is not long-term stable in benzene solution. Addition of pyridine to aged reaction mixtures allowed the isolation of the adduct (py)H(2)B-C(6)H(4)-C(6)H(4)-(py)BC(12)H(8) (10·py(2)) of a ring-opened dimer of 5. Storage of a hexane solution of 9-Br-9-borafluorene and Et(3)SiH for 1-2 weeks at rt leads to the formation of crystals of a ring-opened pentamer H[-(H)B-(C(6)H(4))(2)-](4)BC(12)H(8) (11) of 5 (preparative yields are obtained after 1-4 months). The polymer main chain of 11 is reinforced by four intrastrand B-H-B three-center, two-electron bonds. Apart from the main product 11, we have also isolated minor amounts of closely related oligomers carrying different chain ends, i.e., H(8)C(12)B-(C(6)H(4))(2)[-(H)B-(C(6)H(4))(2)-](2)BC(12)H(8) (12) and H[-(H)B-(C(6)H(4))(2)-](5)BH(2) (13). When the reaction between 9-Br-9-borafluorene and Et(3)SiH is carried out in refluxing toluene, the cyclic dimer [-(μ-H)B-(C(6)H(4))(2)-](2) (14) can be obtained in a crystalline yield of 25%. The compounds 9, 10·py(2), 11, 12, 13, and 14 have been structurally characterized by X-ray crystallography. The entire reaction pathway leading from 5 to 10, 11, 12, 13, and 14 has been thoroughly elucidated by DFT calculations and we propose a general mechanistic scenario applicable for ring-opening polymerization reactions of 9-borafluorenes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Boron Compounds / chemical synthesis
  • Boron Compounds / chemistry*
  • Crystallography, X-Ray
  • Fluorenes / chemistry*
  • Hydrocarbons, Aromatic / chemistry*
  • Magnetic Resonance Spectroscopy / standards
  • Models, Molecular
  • Molecular Structure
  • Reference Standards

Substances

  • 9-H-9-borafluorene
  • Boron Compounds
  • Fluorenes
  • Hydrocarbons, Aromatic