Comparative genomics of Lactobacillus sakei with emphasis on strains from meat

Mol Genet Genomics. 2011 Apr;285(4):297-311. doi: 10.1007/s00438-011-0608-1. Epub 2011 Mar 3.

Abstract

Lactobacillus sakei is a lactic acid bacterium important in food microbiology mainly due to its ability to ferment and preserve meat. The genome sequence of L. sakei strain 23K has revealed specialized metabolic capacities that reflect the bacterium's adaption to meat products, and that differentiate it from other LAB. An extensive genomic diversity analysis was conducted to elucidate the core features of the species, and to provide a better comprehension of niche adaptation of the organism. Here, we describe the genomic comparison of 18 strains of L. sakei originating mainly from processed meat against the 23K strain by comparative genome hybridization. Pulsed field gel electrophoresis was used to estimate the genome sizes of the strains, which varied from 1.880 to 2.175 Mb, and the 23K genome was among the smallest. Consequently, a large part of the genome of this strain belongs to a common gene pool invariant in this species. The majority of genes important in adaption to meat products, the ability to flexibly use meat components, and robustness during meat processing and storage were conserved, such as genes involved in nucleoside scavenging, catabolism of arginine, and the ability to cope with changing redox and oxygen levels, which is indicative of the role these genes play in niche specialization within the L. sakei species. Moreover, an additional set of sequenced L. sakei genes beyond the 23K genome was present on the microarray used, and it was demonstrated that all the strains carry remnants of or complete bacteriocin operons. The genomic divergence corresponded mainly to five regions in the 23K genome, which showed features consistent with horizontal gene transfer. Carbohydrate-fermentation profiles of the strains were evaluated in light of the CGH data, and for most substrates, the genotypes were consistent with the phenotypes. We have demonstrated a highly conserved organization of the L. sakei genomes investigated, and the 23K strain is a suitable model organism to study core features of the L. sakei species.

Publication types

  • Comparative Study

MeSH terms

  • Adaptation, Physiological / genetics
  • Bacteriocins / genetics
  • Cluster Analysis
  • Comparative Genomic Hybridization
  • Food Handling
  • Gene Transfer, Horizontal / genetics
  • Genes, Bacterial / genetics
  • Genetic Variation
  • Genomics / methods*
  • Lactobacillus / genetics*
  • Lactobacillus / metabolism
  • Meat / microbiology*
  • Microbial Viability / genetics

Substances

  • Bacteriocins