Interaction of radio-frequency, high-strength electric fields with harmful insects

J Microw Power Electromagn Energy. 2009;43(4):17-27. doi: 10.1080/08327823.2008.11688621.


The objective of the research reported here is to investigate the influence of radio-frequency electric fields of high strength on insect mortality. The experiments were accomplished at the frequencies 47.5, 900 and 2,450 MHz for the pulse modulated radiation treatment and the continuous wave RF radiation. Two types of systems, which are the coaxial irradiation chamber and the irradiation chamber with plane capacitor are presented in this work. The experiments in the coaxial type radiation chamber on granary weevil (Sitophilus granarius L.) at voltages U = 5.5-10.5 kV frequency 47.5 MHz, electric field intensity 180-350 kV/m and exposures 5-60 seconds give 40-90% of insect mortality that mainly depends on voltage increase. The experiments in the irradiation chamber with plane capacitor are presented for the pulse modulated regime at a frequency of 47.5 MHz and field intensities 350-2000 kV/m. 100% of insect mortality is reached at the exposures of 1-30 seconds, at field intensity of 2000 kV/m. The RF radiation of granary weevil (Sitophilus granarius L.) in the coaxial irradiation chamber in stationary mode reaches 100% insect mortality at major exposure times for the frequencies 900 and 2,450 MHz. Stationary generator mode also permits 21-97% fungi (Cladosporium cladosporioides, Aspergillus candidus) control at voltage U = 10.5 kV frequencies 900 and 2,450 MHz and exposures of 120-180 seconds. Further investigation is needed for microscopic fungi control to understand the fungi reproduction mechanism during the RF-radiation treatment for Aspergillus fumigatus.

MeSH terms

  • Animals
  • Aspergillus
  • Cladosporium
  • Edible Grain / microbiology
  • Food Microbiology
  • Insect Control / instrumentation
  • Insect Control / methods*
  • Radio Waves*
  • Weevils*