Aberrant chromosome morphology in human cells defective for Holliday junction resolution

Nature. 2011 Mar 31;471(7340):642-6. doi: 10.1038/nature09790. Epub 2011 Mar 13.


In somatic cells, Holliday junctions can be formed between sister chromatids during the recombinational repair of DNA breaks or after replication fork demise. A variety of processes act upon Holliday junctions to remove them from DNA, in events that are critical for proper chromosome segregation. In human cells, the BLM protein, inactivated in individuals with Bloom's syndrome, acts in combination with topoisomerase IIIα, RMI1 and RMI2 (BTR complex) to promote the dissolution of double Holliday junctions. Cells defective for BLM exhibit elevated levels of sister chromatid exchanges (SCEs) and patients with Bloom's syndrome develop a broad spectrum of early-onset cancers caused by chromosome instability. MUS81-EME1 (refs 4-7), SLX1-SLX4 (refs 8-11) and GEN1 (refs 12, 13) also process Holliday junctions but, in contrast to the BTR complex, do so by endonucleolytic cleavage. Here we deplete these nucleases from Bloom's syndrome cells to analyse human cells compromised for the known Holliday junction dissolution/resolution pathways. We show that depletion of MUS81 and GEN1, or SLX4 and GEN1, from Bloom's syndrome cells results in severe chromosome abnormalities, such that sister chromatids remain interlinked in a side-by-side arrangement and the chromosomes are elongated and segmented. Our results indicate that normally replicating human cells require Holliday junction processing activities to prevent sister chromatid entanglements and thereby ensure accurate chromosome condensation. This phenotype was not apparent when both MUS81 and SLX4 were depleted from Bloom's syndrome cells, suggesting that GEN1 can compensate for their absence. Additionally, we show that depletion of MUS81 or SLX4 reduces the high frequency of SCEs in Bloom's syndrome cells, indicating that MUS81 and SLX4 promote SCE formation, in events that may ultimately drive the chromosome instabilities that underpin early-onset cancers associated with Bloom's syndrome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age of Onset
  • Bloom Syndrome / enzymology
  • Bloom Syndrome / genetics*
  • Bloom Syndrome / pathology
  • Chromatids / genetics
  • Chromatids / metabolism
  • Chromosome Aberrations*
  • Chromosomes, Human*
  • DNA, Cruciform*
  • DNA-Binding Proteins / deficiency
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Endonucleases / deficiency
  • Endonucleases / genetics
  • Endonucleases / metabolism
  • Genomic Instability / genetics
  • Holliday Junction Resolvases / deficiency
  • Holliday Junction Resolvases / genetics
  • Holliday Junction Resolvases / metabolism
  • Humans
  • Metaphase
  • Neoplasms / genetics
  • Neoplasms / pathology
  • Phenotype
  • RNA Interference
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • RecQ Helicases / deficiency
  • RecQ Helicases / genetics
  • Recombinases / deficiency
  • Recombinases / genetics
  • Recombinases / metabolism
  • Sister Chromatid Exchange* / genetics


  • DNA, Cruciform
  • DNA-Binding Proteins
  • RNA, Small Interfering
  • Recombinases
  • Endonucleases
  • MUS81 protein, human
  • SLX4 protein, human
  • GEN1 protein, human
  • Holliday Junction Resolvases
  • Bloom syndrome protein
  • RecQ Helicases