Disorder effects in pnictides: a tunneling spectroscopy study

J Phys Condens Matter. 2010 Nov 24;22(46):465701. doi: 10.1088/0953-8984/22/46/465701. Epub 2010 Nov 4.

Abstract

We present the synthesis and the tunneling spectroscopy study of superconducting FeSe(0.5)Te(0.5) (T(c) = 14 K), SmFeAsO(0.85) (T(c) = 54 K) and SmFeAsO(0.9)F(0.1) (T(c) = 45 K). The samples were characterized by Rietveld refinement of x-ray diffraction patterns and transport as well as temperature-dependent magnetic measurements. Tunneling experiments on FeSe(0.5)Te(0.5) revealed a single superconducting gap ∼ 1 meV in BCS-like tunneling conductance spectra. In SmFeAsO(0.85) and SmFeAsO(0.9)F(0.1), however, more complex spectra were observed, characterized by two gap-like structures at ∼ 4 and ∼ 10 meV. These spectra are qualitatively understood assuming a two-band superconductor with a 's ±' order parameter. We show that, depending on the sign relation between the pairing amplitudes in the two bands, the interband quasiparticle scattering has a crucial effect on the shape of the tunneling spectra. On the other hand, single-gap spectra found in FeSe(0.5)Te(0.5) are more compatible with a disorder-induced 's '-wave gap, due to the Se-Te substitution.

Publication types

  • Research Support, Non-U.S. Gov't