Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications

Nanotechnology. 2011 May 6;22(18):185601. doi: 10.1088/0957-4484/22/18/185601. Epub 2011 Mar 17.

Abstract

A novel method was developed for the one-pot synthesis of ultrafine poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), using an emulsion solvent evaporation formulation method. Using either cetyltrimethylammonium bromide (CTAB) or poly(ethylene glycol)-distearyl phosphoethanolamine (PEGPE) as an oily emulsifier during the emulsion process, produced PLGA particle sizes of less than 50 nm, constituting a breakthrough in emulsion formulation methods. The yield of ultrafine PLGA NPs increased with PEGPE/PLGA ratio, reaching a plateau at around 85%, when the PEGPE/PLGA ratio reached 3:1. The PEGPE-PLGA NPs exhibited high drug loading content, reduced burst release, good serum stability, and enhanced cell uptake rate compared with traditional PLGA NPs. Sub-50 nm diameter PEG-coated ultrafine PLGA NPs show great potential for in vivo drug delivery systems.

MeSH terms

  • Drug Carriers / chemistry*
  • Drug Carriers / pharmacokinetics
  • HeLa Cells
  • Humans
  • Lactic Acid / chemistry*
  • Nanoparticles / chemistry*
  • Nanoparticles / ultrastructure
  • Nanotechnology / methods*
  • Particle Size
  • Polyethylene Glycols / chemistry*
  • Polyglycolic Acid / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Surface-Active Agents

Substances

  • Drug Carriers
  • Surface-Active Agents
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Polyethylene Glycols