Basic tenets of Mendelian inheritance are violated by paramutations in which trans-homolog interactions lead to heritable changes in gene regulation and phenotype. First described in plants, similar behaviors have now been noted in diverse eukaryotes. Genetic and molecular studies of paramutations occurring in maize indicate that components of a small interfering RNA (siRNA) biogenesis pathway are required for the maintenance of meiotically heritable regulatory states. Although these findings lead to a hypothesis that siRNAs themselves mediate paramutation interactions, an assessment of existing data supports the opinion that siRNAs alone are insufficient. Recent evidence implies that transcription of paramutation-associated repeats and siRNA-facilitated chromatin changes at affected loci are involved in directing and maintaining the heritable changes in gene regulation that typify paramutations.
Copyright © 2011 Elsevier Ltd. All rights reserved.