Purpose of review: Antineutrophil cytoplasmic autoantibodies (ANCAs) are associated with vasculitis. Current therapy involves administration of toxic therapy that is not optimally effective. This review will summarize evidence for the pathogenicity of ANCAs, which will suggest possible strategies for improving treatment.
Recent findings: Pauci-immune small vessel vasculitis is associated with antibodies against myeloperoxidase (MPO-ANCA) and proteinase 3 (PR3-ANCA). One research group has reported a high frequency of autoantibodies against lysosomal-associated membrane protein 2 (LAMP-2) in patients with MPO-ANCA or PR3-ANCA. Epigenetic dysregulation appears to be the basis for increased MPO and PR3 neutrophil gene expression in ANCA disease. Release of neutrophil extracellular traps may be involved in initiating the ANCA autoimmune response and causing vessel injury. Generation of C5a by alternative pathway activation is involved in pathogenesis in mouse models. Intervention strategies in mice that target antigens, antibodies and inflammatory signaling pathways may translate into novel therapies. Animal models of LAMP-ANCA and PR3-ANCA disease have been proposed. Molecular mimicry and responses to complementary peptides may be initiating events for ANCAs. T cells, including regulatory T cells, have been implicated in the origin and modulation of the ANCAs, as well as in the induction of tissue injury.
Summary: Our basic understanding of the origins and pathogenesis of ANCA disease is advancing. This deeper understanding already has spawned novel therapies that are being investigated in clinical trials. This brief review shows that there are more questions than answers, and new questions are emerging faster than existing questions are being answered.