Physical and clinical performance of the mCT time-of-flight PET/CT scanner

Phys Med Biol. 2011 Apr 21;56(8):2375-89. doi: 10.1088/0031-9155/56/8/004. Epub 2011 Mar 22.


Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.

Publication types

  • Comparative Study
  • Evaluation Study

MeSH terms

  • Clinical Trials as Topic
  • Equipment Design
  • Humans
  • Phantoms, Imaging
  • Positron-Emission Tomography / instrumentation
  • Positron-Emission Tomography / methods*
  • Sensitivity and Specificity
  • Time Factors
  • Tomography Scanners, X-Ray Computed*