Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation

Genet Res (Camb). 2010 Dec;92(5-6):331-48. doi: 10.1017/S0016672310000601.


Over the past 30 years, the characteristics that have made the nematode Caenorhabditis elegans one of the premier animal model systems have also allowed it to emerge as a powerful model system for determining the genetic basis of quantitative traits, particularly for the identification of naturally segregating and/or lab-adapted alleles with large phenotypic effects. To better understand the genetic underpinnings of natural variation in other complex phenotypes, C. elegans is uniquely poised in the emerging field of quantitative systems biology because of the extensive knowledge of cellular and neural bases to such traits. However, perturbations in standing genetic variation and patterns of linkage disequilibrium among loci are likely to limit our ability to tie understanding of molecular function to a broader evolutionary context. Coupling the experimental strengths of the C. elegans system with the ecological advantages of closely related nematodes should provide a powerful means of understanding both the molecular and evolutionary genetics of quantitative traits.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics*
  • Evolution, Molecular
  • Genetic Variation*
  • Humans
  • Models, Genetic
  • Quantitative Trait Loci
  • Systems Biology