Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India

Pest Manag Sci. 2011 Aug;67(8):898-903. doi: 10.1002/ps.2127. Epub 2011 Mar 24.

Abstract

Background: The pink bollworm is one of the most destructive pests of cotton. Transgenic cotton producing Bt toxin Cry1Ac or a combination of Cry1Ac and Cry2Ab2 has been used effectively against this pest. However, some other insects have evolved resistance to Bt toxins in the field. During the 2007-2008 and 2008-2009 seasons, pink bollworm populations in India were surveyed to evaluate their responses to Cry1Ac and seed powder containing Cry1Ac and Cry2Ab2.

Results: The results provide evidence that resistance to Cry1Ac had evolved by 2008 in a population sampled from non-Bt cotton in the Amreli district of Gujarat in western India. The median lethal concentration of Cry1Ac for five-day-old larvae (LC50 ) was significantly higher for insects derived in 2008 from Amreli than for any of the other field populations tested from four locations in India. For Cry1Ac, the mean LC50 for the strain derived from Amreli in 2008 was 44 times higher than for the most susceptible population. However, for seed powder of Bollgard II containing primarily Cry2Ab2, the 2008 Amreli population was only slightly less susceptible than the most susceptible population.

Conclusions: The data reported here constitute the first evidence of field-evolved resistance of pink bollworm to Cry1Ac. This initial evidence spurred more extensive evaluations during the 2009-2010 growing season, which confirmed field-evolved resistance to Cry1Ac in Amreli. The lack of cross-resistance to Cry2Ab2 suggests that plants producing this toxin are likely to be more effective against resistant populations than plants producing only Cry1Ac.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins*
  • Biological Evolution*
  • Endotoxins*
  • Gossypium / genetics
  • Gossypium / parasitology*
  • Hemolysin Proteins*
  • Host-Parasite Interactions
  • India
  • Insecticide Resistance / genetics
  • Insecticides*
  • Larva / physiology
  • Moths / genetics*

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • Insecticides
  • insecticidal crystal protein, Bacillus Thuringiensis