Brain-targeting form of docosahexaenoic acid for experimental stroke treatment: MRI evaluation and anti-oxidant impact

Curr Neurovasc Res. 2011 May;8(2):95-102. doi: 10.2174/156720211795495349.


Epidemiologic studies report cardiovascular protection conferred by omega-3 fatty acids, in particular docosahexaenoic acid (DHA). However, few experimental studies have addressed its potential in acute stroke treatment. The present study used multimodal MRI to assess in vivo the neuroprotection conferred by DHA and by a brain-targeting form of DHA-containing lysophosphatidylcholine (AceDoPC) in experimental stroke. Rats underwent intraluminal middle cerebral artery occlusion (MCAO) and were treated at reperfusion by intravenous injection of i) saline, ii) plasma from donor rats, iii) DHA or iv) AceDoPC, both solubilized in plasma. Twenty-four hours after reperfusion, animals underwent behavioral tests and were sacrificed. Multiparametric MRI (MRA, DWI, PWI, T2-WI) was performed at H0, during occlusion, and at H24, before sacrifice. Brain tissue was used for assay of F(2)-isoprostanes as lipid peroxidation markers. Initial lesion size and PWI/DWI mismatch were comparable in the four groups. Between H0 and H24, lesion size increased in the saline group (mean ± s.d.: +18% ± 20%), was stable in the plasma group (-3% ± 29%), and decreased in the DHA (-17% ± 15%, P=0.001 compared to saline) and AceDoPC (-34% ± 27%, P=0.001 compared to saline) groups. Neuroscores in the AceDoPC group tended to be lower than in the other groups (P=0.07). Treatments (pooled DHA and AceDoPC groups) significantly decreased lipid peroxidation as compared to controls (pooled saline and vehicle) (P=0.03). MRI-based assessment demonstrated the neuroprotective effect of DHA in the MCAO model. Results further highlighted the therapeutic potential of engineered brain-targeting forms of omega-3 fatty acids for acute stroke treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / pharmacology*
  • Antioxidants / therapeutic use
  • Brain / drug effects*
  • Brain / pathology*
  • Disease Models, Animal
  • Docosahexaenoic Acids / pharmacology*
  • Docosahexaenoic Acids / therapeutic use
  • Lysophosphatidylcholines / pharmacology
  • Lysophosphatidylcholines / therapeutic use
  • Male
  • Neuroprotective Agents / pharmacology
  • Neuroprotective Agents / therapeutic use
  • Rats
  • Rats, Sprague-Dawley
  • Stroke / drug therapy*
  • Stroke / pathology*


  • Antioxidants
  • Lysophosphatidylcholines
  • Neuroprotective Agents
  • Docosahexaenoic Acids