Collinear features impair visual detection by rats

J Vis. 2011 Mar 31;11(3):22. doi: 10.1167/11.3.22.

Abstract

We measure rats' ability to detect an oriented visual target grating located between two flanking stimuli ("flankers"). Flankers varied in contrast, orientation, angular position, and sign. Rats are impaired at detecting visual targets with collinear flankers, compared to configurations where flankers differ from the target in orientation or angular position. In particular, rats are more likely to miss the target when flankers are collinear. The same impairment is found even when the flanker luminance was sign-reversed relative to the target. These findings suggest that contour alignment alters visual processing in rats, despite their lack of orientation columns in the visual cortex. This is the first report that the arrangement of visual features relative to each other affects visual behavior in rats. To provide a conceptual framework for our findings, we relate our stimuli to a contrast normalization model of early visual processing. We suggest a pattern-sensitive generalization of the model that could account for a collinear deficit. These experiments were performed using a novel method for automated high-throughput training and testing of visual behavior in rodents.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal / physiology
  • Conditioning, Psychological / physiology
  • Contrast Sensitivity / physiology*
  • Lighting
  • Orientation / physiology
  • Photic Stimulation / methods*
  • Psychophysics*
  • Rats
  • Retina / physiology*
  • Space Perception / physiology*