Numerosity judgments of small sets of items (≤ 3) are generally fast and error free, while response times and error rates increase rapidly for larger numbers of items. We investigated an efficient process used for judging small numbers of items (known as subitizing) in active touch. We hypothesized that this efficient process for numerosity judgment might be related to stimulus properties that allow for efficient (parallel) search. Our results showed that subitizing was not possible for raised lines among flat surfaces, whereas this type of stimulus could be detected in parallel over the fingers. However, subitizing was possible when the number of fingers touching a surface had to be judged while the other fingers were lowered in mid-air. In the latter case, the lack of tactile input is essential, since subitizing was not enabled by differences in proprioceptive information from the fingers. Our results show that subitizing using haptic information from the fingers is possible only when some fingers receive tactile information while other fingers do not.