Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear

Brain Topogr. 2011 Oct;24(3-4):204-19. doi: 10.1007/s10548-011-0181-2. Epub 2011 Apr 11.

Abstract

In the present paper, we review what is currently known about the effects of deafness on the developing human auditory system and ask: Without use, does the immature auditory system lose the ability to normally function and mature? Any change to the structure or function of the auditory pathways resulting from a lack of activity will have important implications for future use through an auditory prosthesis such as a cochlear implant. Data to date show that deafness in children arrests and disrupts normal auditory development. Multiple changes to the auditory pathways occur during the period of deafness with the extent and type of change being dependent upon the age and stage of auditory development at onset of deafness, the cause or type of deafness, and the length of time the immature auditory pathways are left without significant input. Structural changes to the auditory nerve, brainstem, and cortex have been described in animal models of deafness as well in humans who are deaf. Functional changes in deaf auditory pathways have been evaluated by using a cochlear implant to stimulate the auditory nerve with electrical pulses. Studies of electrically evoked activity in the immature deaf auditory system have demonstrated that auditory brainstem development is arrested and that thalamo-cortical areas are vulnerable to being taken over by other competitive inputs (cross-modal plasticity). Indeed, enhanced peripheral sight and detection of visual movement in congenitally deaf cats and adults have been linked to activity in specific areas of what would normally be auditory cortex. Cochlear implants can stimulate developmental plasticity in the auditory brainstem even after many years of deafness in childhood but changes in the auditory cortex are limited, at least in part, by the degree of reorganization which occurred during the period of deafness. Consequently, we must identify hearing loss rapidly (i.e., at birth for congenital deficits) and provide cochlear implants to appropriate candidates as soon as possible. Doing so has facilitated auditory development in the thalamo-cortex and allowed children who are deaf to perceive and use spoken language.

Publication types

  • Review

MeSH terms

  • Adolescent
  • Auditory Cortex / growth & development
  • Auditory Cortex / physiology
  • Auditory Pathways / growth & development
  • Auditory Pathways / physiology
  • Brain / growth & development*
  • Brain / physiology
  • Brain Stem / growth & development
  • Brain Stem / physiology
  • Child
  • Child, Preschool
  • Cochlear Implants*
  • Deafness / physiopathology
  • Deafness / therapy*
  • Humans
  • Infant
  • Infant, Newborn
  • Neuronal Plasticity / physiology