Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle

Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H61-8. doi: 10.1152/ajpheart.01020.2010. Epub 2011 Apr 13.

Abstract

Extracellular inorganic pyrophosphate (ePP(i)) is an important endogenous inhibitor of vascular calcification, but it is not known whether systemic or local vascular PP(i) metabolism controls calcification. To determine the role of ePP(i) in vascular smooth muscle, we identified the pathways responsible for ePP(i) production and hydrolysis in rat and mouse aortas and manipulated them to demonstrate their role in the calcification of isolated aortas in culture. Rat and mouse aortas contained mRNA for ectonucleotide pyrophosphatase/phosphodiesterases (NPP1-3), the putative PP(i) transporter ANK, and tissue-nonspecific alkaline phosphatase (TNAP). Synthesis of PP(i) from ATP in aortas was blocked by β,γ-methylene-ATP, an inhibitor of NPPs. Aortas from mice lacking NPP1 (Enpp1(-/-)) did not synthesize PP(i) from ATP and exhibited increased calcification in culture. Although ANK-mediated transport of PP(i) could not be demonstrated in aortas, aortas from mutant (ank/ank) mice calcified more in culture than did aortas from normal (ANK/ANK) mice. Hydrolysis of PP(i) was reduced 25% by β,γ-methylene-ATP and 50% by inhibition of TNAP. Hydrolysis of PP(i) was increased in cells overexpressing TNAP or NPP3 but not NPP1 and was not reduced in Enpp1(-/-) aortas. Overexpression of TNAP increased calcification of cultured aortas. The results show that smooth muscle NPP1 and TNAP control vascular calcification through effects on synthesis and hydrolysis of ePP(i), indicating an important inhibitory role of locally produced PP(i). Smooth muscle ANK also affects calcification, but this may not be mediated through transport of PP(i). NPP3 is identified as an additional pyrophosphatase that could influence vascular calcification.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Adenoviridae / genetics
  • Alkaline Phosphatase / antagonists & inhibitors
  • Alkaline Phosphatase / biosynthesis
  • Alkaline Phosphatase / genetics
  • Animals
  • Arteries / metabolism
  • Calcification, Physiologic / physiology*
  • DNA Primers
  • Diphosphates / metabolism*
  • Extracellular Space / drug effects
  • Extracellular Space / enzymology
  • Extracellular Space / metabolism*
  • Humans
  • Mice
  • Mice, Knockout
  • Muscle, Smooth, Vascular / enzymology
  • Muscle, Smooth, Vascular / metabolism*
  • Organ Culture Techniques
  • Phosphoric Diester Hydrolases
  • Pyrophosphatases / antagonists & inhibitors
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • Rats
  • Rats, Sprague-Dawley
  • Reverse Transcriptase Polymerase Chain Reaction
  • Transfection
  • Vascular Calcification / genetics
  • Vascular Calcification / metabolism*

Substances

  • DNA Primers
  • Diphosphates
  • RNA, Messenger
  • Adenosine Triphosphate
  • Alkaline Phosphatase
  • Phosphoric Diester Hydrolases
  • ectonucleotide pyrophosphatase phosphodiesterase 1
  • Pyrophosphatases