Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2011 Apr 13:342:d1855.
doi: 10.1136/bmj.d1855.

Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies

Affiliations
Randomized Controlled Trial

Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies

Roman Hovorka et al. BMJ. .

Abstract

Objective: To compare the safety and efficacy of overnight closed loop delivery of insulin (artificial pancreas) with conventional insulin pump therapy in adults with type 1 diabetes.

Design: Two sequential, open label, randomised controlled crossover, single centre studies.

Setting: Clinical research facility.

Participants: 24 adults (10 men, 14 women) with type 1 diabetes, aged 18-65, who had used insulin pump therapy for at least three months: 12 were tested after consuming a medium sized meal and the other 12 after consuming a larger meal accompanied by alcohol.

Intervention: During overnight closed loop delivery, sensor measurements of glucose were fed into a computer algorithm, which advised on insulin pump infusion rates at 15 minute intervals. During control nights, conventional insulin pump settings were applied. One study compared closed loop delivery of insulin with conventional pump therapy after a medium sized evening meal (60 g of carbohydrates) at 1900, depicting the scenario of "eating in." The other study was carried out after a later large evening meal (100 g of carbohydrates) at 2030, accompanied by white wine (0.75 g/kg ethanol) and depicted the scenario of "eating out."

Main outcome measures: The primary outcome was the time plasma glucose levels were in target (3.91-8.0 mmol/L) during closed loop delivery and a comparable control period. Secondary outcomes included pooled data analysis and time plasma glucose levels were below target (≤ 3.9 mmol/L).

Results: For the eating in scenario, overnight closed loop delivery of insulin increased the time plasma glucose levels were in target by a median 15% (interquartile range 3-35%), P = 0.002. For the eating out scenario, closed loop delivery increased the time plasma glucose levels were in target by a median 28% (2-39%), P = 0.01. Analysis of pooled data showed that the overall time plasma glucose was in target increased by a median 22% (3-37%) with closed loop delivery (P < 0.001). Closed loop delivery reduced overnight time spent hypoglycaemic (plasma glucose ≤ 3.9 mmol/L) by a median 3% (0-20%), P=0.04, and eliminated plasma glucose concentrations below 3.0 mmol/L after midnight.

Conclusion: These two small crossover trials suggest that closed loop delivery of insulin may improve overnight control of glucose levels and reduce the risk of nocturnal hypoglycaemia in adults with type 1 diabetes. Trial registration ClinicalTrials.gov NCT00910767 and NCT00944619.

PubMed Disclaimer

Conflict of interest statement

Competing interests: All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: in the previous 3 years RH has received speaker honorariums from Minimed Medtronic, Lifescan, and Novo Nordisk, served on advisory panel for Animas and Minimed Medtronic, received licence fees from BBraun and Beckton Dickinson, and served as a consultant to Beckton Dickinson, BBraun, and Profil; CK has served as a consultant to Medtronic International Trading Sàrl and Diabetes Technology Management; SAA has served on advisory boards for Medtronic and Johnson and Johnson and has received speaker honorariums for Medtronic, Animas, and Roche; SRH has received speaker honorariums from NovoNordisk, Eli Lilly, Sanofi-Aventis, and Lifescan and served on advisory panels for NovoNordisk and Eli Lily; MLE has received speaker honorariums from Eli Lilly and served on advisory panels for Medtronic, Sanofi-Aventis, and Cellnovo; HRM has received speaker honorariums from Minimed Medtronic; MEW has received license fees from Becton Dickinson and has served as a consultant to Beckton Dickinson; KK, JH, JMA, DE, DX, and MN declare no competing financial interests. RH, MEW, and DBD report patent applications in the area of closed loop delivery of insulin.

Figures

None
Fig 1 Design of two studies comparing closed loop delivery of insulin with conventional insulin pump therapy after two meal scenarios: eating in and eating out
None
Fig 2 Flow of participants through study comparing closed loop delivery of insulin with conventional insulin pump therapy after a medium sized evening meal (eating in scenario), and study comparing closed loop delivery with insulin pump therapy after a large evening meal accompanied by alcohol (eating out scenario)
None
Fig 3 Profiles (medians and interquartile ranges) of plasma glucose and insulin concentrations and insulin infusion in eating in scenario (12 participants). Outlying squares represent hypoglycaemic events (glucose level <3.0 mmol/L)
None
Fig 4 Profiles (medians and interquartile ranges) of plasma glucose and insulin concentrations and insulin infusion in the eating out scenario (12 participants). Outlying squares represent hypoglycaemic events (glucose level <3.0 mmol/L)
None
Fig 5 Distribution of plasma glucose values during closed loop insulin delivery and conventional insulin pump therapy (continuous subcutaneous insulin infusion) combining data collected from midnight until end of the eating in scenario and the eating out scenario. Percentages represent total time plasma glucose level was below, at, and above target from midnight until end of closed loop delivery

Comment in

Similar articles

Cited by

References

    1. World Health Organization. Prevention of diabetes mellitus. Report of a WHO study group. WHO, 1994. - PubMed
    1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010;87:4-14. - PubMed
    1. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of type 1 diabetes—the analysis of the data on published incidence trends. Diabetologia 1999;42:1395-403. - PubMed
    1. Diabetic Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977-86. - PubMed
    1. Amiel S, Beveridge S, Bradley C, Gianfrancesco C, Heller S, James P, et al. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ 2002;325:746-9. - PMC - PubMed

Publication types

Associated data