Efficiency at high spinning frequencies of heteronuclear decoupling methods designed to quench rotary resonance

Solid State Nucl Magn Reson. 2011 Jul;40(1):21-6. doi: 10.1016/j.ssnmr.2011.03.004. Epub 2011 Apr 1.

Abstract

The performance of two recently developed heteronuclear decoupling schemes designed to quench rotary resonance, phase-inverted supercycled sequence for attenuation of rotary resonance (PISSARRO) and high-phase two-pulse phase modulation (high-phase TPPM), are probed at high spinning frequencies. High-phase TPPM may be useful at the n=1 rotary resonance condition while PISSARRO permits efficient decoupling over a broad commonly used range of rf amplitudes, even at very high spinning frequencies. New insights into the response of spin systems to both decoupling schemes have been gained. High-phase TPPM is sensitive to the offsets of remote protons, their chemical shift anisotropies, and the relative orientations of the heteronuclear dipolar and proton chemical shift tensors. Since PISSARRO is virtually immune against such effects, the method is especially suited for very high magnetic fields.